A New Approach to Negative
Feedback Design

N. H. CROWHURST*

A thorough discussion of the characteristics of individual amplifier stages
and their relation to the over-all performance of a feedback amplifier.

INCE THE APPEARANCE of the author’s
handbook “Feedback,” in which ap-
peared for the first time some charts

specially prepared to aid in working
out design details, several friends and
correspondents have suggested that the
basis for these charts should be pub-
lished. Most people find difficulty in
digesting the mathematics of design,
for which reason such details were de-
liberately left out of the handbook. How-
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Fig. 1. Showing the effect of feedback on a

feedback loop containing two identical stages.

All curves plotted to the same zero reference
level.

ever, further work since preparing the
material in the book promises to lead to
interesting new developments in the
design of feedback amplifiers, and for
this reason it would seem to be time to
publish a little more about the method.

When a number of stages are con-
nected into a closed loop, possibility of
instability, or the consideration of fre-
quency response of the combination, is
concentrated in two principal compo-
nents, contiguous with the low- and
high-frequency cutoffs of the arrange-
ment respectively, Series capacitor ele-
ments, in the interstage couplings, and
any shunt inductors contribute towards
the low-frequency cutoff of the complete
arrangement, while the interstage shunt
capacitance (to ground), and any series
inductance (such as transformer leakage
inductance), contribute to the high-fre-
quency cutoff,

The simplest way to designate the
characteristic of a single element pro-
ducing a 6 db/octave cut-off in either
direction is by its time constant, as this
avoids the necessity for calculating the
reactance of capacitances and induct-
ances at different frequencies and also
yields a more direct approach at a later
stage. For the purposes of this treat-
ment, each stage is assumed to possess a
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single reactance causing low-frequency
cutoff and a single reactance causing
high-frequency cutoff, It is also assumed
that no interaction occurs between the
impedances of successive stages other
than around the complete loop, and that
there is no appreciable interaction be-
tween the components of the stage caus-
ing cutoff at the opposite ends of the
frequency spectrum. Where such inter-
action does in fact occur, the treatment
is usually only modified quantitatively,
although in some cases, particularly
where transformers are included in the
loop, some of the time constants theoreti-
cally become complex quantities. This
does not complicate matters as much as
may be expected, because the necessity
for actually evaluating complex time
constants is avoided in this method, as
will be shown later. In application, the
number of equivalent stages around the
loop for Lf. and h.f. cutoff representation
may not always be identical.

General Form

To pave the way for detailed treat-
ment, the h.f. response of a single net-
work can be represented hy the expres-
sion I + jv, where x =f/fo, and fo is the
frequency where the shunt reactance is
equal to the circuit resistance it shunts.
A number of such responses combined,
but not necessarily using the same fo,
can be represented, with respect to a

Liog 5 100-1
E;. 80
Is ég 20 e :g,:
3 2o
00— 15— = -

Il
1
G6DB/OCTAVE SLOPE
_m
SR VA SR T o
e
HAHHHH

DB AT TOUCH POINT ON
5 5 e

s &

DB PEAK

i
¢
-1
|
!

Il
S
o
|
4

Fig. 3. An abac to aid in calculating the re-
sponse of any feedback loop with two stages,
using positive or negative feedback.

suitable
equation,
D=1-ax?*+Dxt. . .

+jex = jda + jex®. | |

reference frequency, by an

(1)
This expression represents the loss due
to these couplings in both magnitude
and phase. A similar expression can
represent the Lf. response by using

Jr:fu/f,

6 8
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Fig. 2. The curves of Fig. 1 replotted to take

loss of gain due to feedback into account. The

significance of the chain dotted lines in these
figures is explained in the text.

Assume now that an amplifier has a
gain, where no reactances are having
any effect, of 4m, then the gain at other
points will be given by

‘4M‘
A=—- 2
D (2)

Now we introduce the well-known
feedback equation, using Afm to repre-
sent the gain with feedback at a fre-
quency where no reactances are having
effect,

. Am N

Afmml%—AwB (3)
or at other frequencies,
1
Af=-2

T as 4)

Substituting Eq. (2) into this gives

fh’l:‘}ﬁ

Ap=—Am 5

'S D v Aup (3)

This can be rearranged to give the ei-
fective attenuation from mid-band gain
(without feedback),

.4}”
Di=—=D +AmB

=5 (6)
In expression (3), Auf is the loop gain
(or loss, but usually greater than unity,
representing a gain) and I+ Anf is the
feedback factor, by which gain is modi-
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fied, as well as impedance, distortion and
anything else for which feedback may be
used. Writing, for the feedback factor,
F=1+AmB, and substituting (1) into
(6), the latter may be re-written.

Di=F—ax*+bat. . .
jex —jdxd + jext. ..

(7)

the right side of which is identical to
that of (1), except that I has been sub-
stituted for 1. This fact proves conven-
ient in developing the expressions for
various conditions.

Single Stage Loop

Applying this to the simple single-
stage case, where the feedback loop only
includes one reactance affecting cutoff
at the h.f. end (or similarly for the Lf.

end),
D=1+jx (8)

Di=F+jx (9)

In this case the 3-db loss point, which is
also the frequency at which phase shift
is 45 deg., occurs where the imaginary
term is equal to the real term. Without
feedback this is when x=1. With feed-
back, as shown by (9), it is when x=F.
This means that for this case the fre-
quency range is extended in direct pro-
portion to F, the feedback factor.

and

Two-5Stage Loop

Consider first the case using two
couplings with identical h.i. cutoff char-
acteristic, for which

D=(1+jx)t=1-2*+j2x (10)

Di=F -1 +2x (11)

Squaring both sides, and taking 10
times the logarithm to the base 10, the
expression for db response becomes,

db=101og,,Dr?
=101log | (F—2%)? + 447]
=101log,,| F* + (4-2F)x* +x*]  (12)

Differentiating the term in brackets
with respect to # and equating to zero
will find the location of any peak in
the response. This gives

wt=F-2 (13)

From this it is evident that there is no
peak provided FF < 2, or 6 db feedback.
For values of F greater than 2, the
square root of expression (13) gives
the frequency of peak in terms of the
original cutoff frequency of each net-
work as reference. Peak height is given
by substituting (3) and (13) into (12),

and

Fe
dbp=101log,, D

E2
=101log,, Z(.F——I) (14)

For large values of feedback, this ap-
proaches 10 log,, (F/4), which means
that 2:1 increase in feedback (6 db)
then raises the peak height by an addi-
tional 3 db.

Another reference of particular in-
terest in this case is the point where
the response slope is 6 db/octave. This

dlog D
“is found by equating d—;ff:], which
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gives will be assumed that one network has
dlog Df d2log Dr _4Ds? da? » times the time constant of the other.
= X - —_— So
dlog x dDg? dx*  dZlogxw

_ 2wt -2(F=2)x* _
x4 —2(F -2)x* + F?
which. simplifies to give an expression
for the 6 db/octave slope frequency,
xif=F (15)
Attenuation at x,, the 6 db/octave slope

point, is given by substituting (3) and
(15) into (12), giving,

db, = - 4
bs—JOIOgMD—Ie =101log,, i (16)

Table I gives a comparison of responses
at intervals of 6 db feedback. Positive
db figures represent attenuation; nega-
tive, lift.

TABLE |
Feedback 6 db/octave pt Peak
db F xq? dbs Xp? dbp

0 1 1 +6 - -

6 2 2 +3 - —
12 4 4 0 2 -1.25
18 8 8 -3 6 -36
24 16 16 -6 14 -6.3
30 32 32 -9 30 -9.17

Figure 1 shows this family of curves
plotted with a common zero reference
level. At Fig. 2 the same curves are
drawn to take into account the loss of
gain due to feedback. From this it ap-
peafs that the 6 db/octave slope point
is always tangential to a 6 db/octave
line passing through zero level at half
the cutoff frequency of both circuits. On
the common zero reference level presen-
tation of Fig. 1, these points fall on a
rising line of 6 db/octave slope. In Fig.
2, the ultimate cutoff is the same 12 db/
octave response (also shown by a chain
dotted line). These two constructions
with this presentation help in visualiz-
ing how the response changes as feed-
back is progressively increased.

In this two-stage case, the response
never becomes unstable, a condition that
is indicated by infinite peak height.

The foregoing- has applied to identical
cutoff networks combined. In practice
many other combinations can occur. It
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D=(1+jx)(1+jnx)
=l-na?+j(n+l)x
Di=F-nx*+jn+1)x
and the response is
db=101log ,,D?
=101log ;,[F*+{(n+1)?
=101log, | (F—na®)? + (n+1)%x%]
—2Fn} x*+ntxt]  (19)
Differentiating with respect to x and
equating to zero gives

F 2
e E (1)

" 2n® (20)

Substituting this, with (3), into (19)
gives peak height as

(17)
(18)

and

e
dbp=10log,, Df =101og, %
F2
(n+1)* (n+1)
F- P
" 4n?

To find the 6 db/octave slope reference
point:

dlog Dy

dlog x

(21)

_ 2nfxh=[2Fn—(m+1)%]a®
Twixt— [2Fn—(n+1)*)at+ Ft

or
F
o 2
Xa g (22)
Whence attenuation at the 6 db/octave
slope point is
(n+1)?

db,=1010g,, (23)

From (20) it is evident that there is no
peak provided
2
Fe< (n+1)
2n
Substituting this limiting value of F
into (23) gives the attenuation at the

"6 db/octave slope point as 10 log,, 2, or

3 db. The factor (n+1)%/4n is impor-
tant, because it represents the effect of
staggering the time constants by the
ratio #n on the response shaping. For
this reason terms including this factor
appear in expressions (20), (21), and
(23).
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Three-Stage Loops

Taking first the case using three cou-
plings with identical time constants:

D=(1+jx)8=1-3x2+j3x—jx* (24)
Di=F -3x%+j3x —jx? (25)
db=101og,,D¢*=101log,, x
[F2+(9-6F)x*+ 324+ 2] (26)
x?=\2(F-1)-1
(only real root) (27)
dby=101og,,
F
et ] (28)
Fig. 5. Effect of negative feedback on fre- (F-1)[F+7-4\/2(F-1)]

quency and height of peak, using a feedback
loop with three identical stages.

This inter-relation between quantities
using two cutoffs, as well as the inher-
ent stability of these networks, will
prove useful in designing feedback am-
plifiers with desired correction charac-
teristics and rock-steady stability. An-
other useful fact about two-stage cut-
offs is that the half-phase-shift of 90
deg. occurs at the 6 db/octave point.

Since the basic variables are so few, a
simple three line abac can tell all there is
to know about these networks, shown
at Fig. 3. This gives, for db feedback
on the left and time-constant ratio # on
the right, the shape of response appli-
cable in Fig. 4, which is plotted with
the 6 db/octave slope point as reference.

This information is also applicable to
the response of a.f. transformers, as ap-
pears from the fact that Fig. 4 is actu-
ally the same as Fig. 2 of the article
“Making the Best of an Audio Trans-
former” in the January, 1953, issue.
Conditions with the 6 db/octave slope
point above a level of 6 db below zero
level, without feedback, will he repre-
sented on the abac of Fig. 3 by points on
the Time Constant Ratio scale below
n=1, which is left a blank line. This
region represents complementary com-
plex time constants, but their exact
value is unimportant, because the appro-
priate point on Fig. 3 can be used to see
the effect of any degree of feedback.

To use the information in the abac
for such cases, the response curve of
the transformer in its associated circuit
is taken, and either the height of the
peak or the 6 db/octave touch point
noted. For the latter, which must be
used when there is no peak, the response
is plotted on db/log-frequency paper,
and a 6 db/octave slope is drawn touch-
ing the response curve. The attenuation
below or above zero reference level at
this touch point is noted and used on
the chart of Fig. 3. Provision is also
made on this abac for positive feedback
prediction, up to 10 db. This can prove
useful for eliminating the peak in the
response of transformer coupled cir-
cuits, using the kind of feedback for the
required impedance effect as well,

Output source impedance is reduced
by negative voltage feedback, or posi-
tive current feedback. Conversely it is
increased by positive voltage feedback
or negative current feedback. An ad-
vantage of the positive variety of feed-
back in this conmection is that zero or
infinite impedance can be achieved quite
simply with absolute stability.
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With three-stage networks there is a
stability limit to F, so there are two
boundary conditions of interest: (a)
the point at which peaking commences,
and (b) the point where instability
commences. The former occurs in h.i.
cutoffs where the peak frequency passes
through zero, before becoming imagi-
nary. For Lf. cutoffs the peak frequency
passes through infinity (i.e. ap=0 in
either case). From (27) this is at
F=1.5, or 3.522 db feedback. The latter
boundary occurs at a point where D
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Fig. 6. Limit chart to aid in assessing perform-
ance of three-stage loops with non-identical
time constants.

becomes zero, for which both its real
and imaginary parts must be zero.
Equating the imaginary part to zero finds
the value of #* at which it occurs, and
then substituting this value in the real
part finds the value of F. For three
identical h.f. cutoffs instability occurs at
x8® =3, 0r xs=~/3, and Fs=9, or 19.1 db.

The half-slope point could be found
dlogDr 3 .
Tfli?zé’ but this does
not have the same usefulness as in the
two-stage case.

Turning to non-identical cases, which

by equating
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Fig. 7. Effect of negative feedback on peak
frequency and height, using a feedback loop
with four identical stages.
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Fig. 8. Limit chart to aid in assessing perform-
ance of four-stage loops with non-identical
time constants,

are necessary for practical application,
the time constants can vary in more
ways than where there are only two
networks. Extreme possibilities can be
represented by using n for the ratio be-
tween the time constants having the
widest difference, and then considering
(a) the case of two at one extreme and
one at the other, and (b) the case of
three networks geometrically staggered
within this range. Every other possi-
bility must fall between these extremes.

One and Two

Assuming one time constant is #
times each of the other two (for h.f.
cases; for Lf. cases, the same formulas
will apply by using I/ times the other
two) :

D=(1+jx)*(1+jnx)
=1-(2n+1)x°+7(2+n)x—jnx®
Di=F—-(2n+1)x*
+7(2+n)x—ux? (29)
db=101og,,[F*+{(2+n)*
~2F(2n+1)}a* :
+(2n* + 1)t +n22f] (30

Here it is evident that the peaking
boundary can be found by equating the
4% coefficient to zero, or

2+mn)?
= (2t )t (31)
2(2n+1)

As before the boundary for stability is
found by equating both parts of Df to
zero, giving

477

x82:2+13 and Fa= (2+u);2n+2
2 2
:211 + 5+ 2 (32)
7n
Staggered

Here the extreme time constants can
be assumed each to have a ratio of n%
to the central one, in opposite directions.

D=(1+jn""%x)(1+jx)(1+jn%x)
=l-(n-%+1+n%)s?

+i(n-%+1+u¥%)r— x5 (33)
Di=F—(n-%+1+n%)y?
Ti(n el +n )y —jat (34)

db:IOIOgm[FQ+{(ﬂ_%+1+nl’lﬂ)2
—Z2F(n-"%+1+n%)}s?
+(n~%+ 1+ n¥%)rt+ 2] (35)

The peaking boundary occurs where
the a* coefficient is zero, or

n-Y%e ] 4 p¥

F!t: 2

(36)
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Fig. 9. Effect of negative feedback on peak
frequency and height, using a feedback loop
with five identical stages.

and stability boundary where hoth parts
of Di=0, or
asf=n-%+1+n% and
Fs=(n-"+1+n%)* (37)
For three-stage networks, Fig. 5
shows a plot of expressions (27) and
(28) for identical networks, and Fig. 6
a plot of expressions (31), (32), (36),
and (37) for non-identical loops. Figure
5 gives an idea of the rate at which
transition from one boundary to the
other occurs, while Fig. 6 shows the
boundaries for limiting cases, using a
maximum time constant ratio of #.
Fractional values of # mean that the
two similar time-constant cutoffs come
into action before the remaining one,
and vice versa with values greater than
unity. With the staggered arrangement
the curves are obviously symmetrical
for both boundaries. For the stability
boundary they are both symmetrical,
but the one and two arrangement gives
the highest peaking boundary for values
of n greater than unity, that is, when
one network introduces cutoff acting
nearer the pass range than the other
two.

Four Stage Loops

Taking first the case using four cou-
plings with identical time constants:
D=(1+jx)¢=1-06x°

+ 24+ jda — jdx?
Di=F - 06x%+ 2% + j4x — j4x°
db=10 log [F*+ (16 -12F)x* +
(4+42F)xh +42° +2%]  (40)
To find the peak conditions, the expres-
sion in square brackets is differentiated
with respect to 2#? and equated to zero,
leading to the expression,
204 304+ 2% +4=F (3 -x2).
This is a cubic equation in #*. To plot
the frequency of peak, it is simpler to
take the frequency as independent varia-
ble and then find corresponding values
of I from,

_ 2% + 3.,1‘;;!’ + 24 +4
F - 3 — .1,‘{12 (41)

To know the limits between which to
plot, the value of #* producing instability
is #s?=1, and as_before, peaking com-
mences at #?=0.

To find the height of the peak, still
using x as independent variable, values
of F from (41) are substituted into (40).
The results are plotted in Fig. 7, using
F as the common variable for conven-
ience.

(38)
(39)

The peaking houndary is Fp=4/3, or
2.5 db feedback, and the stability bound-
ary is given by equating both parts of
(39) to zero, whence,

rs=1 and Fs=25,
or 14 db feedback (42)

TFor arrangements other than identi-
cal, still greater range is possible than
for the three-stage case, but it is obvious
that any staggered arrangement will not
give such good possibilities as an ar-
rangement using networks each of
which is at one or other limit of the
time-constant range, so such limits only
need be considered. This reduces the
number of possibilities to be presented
to two.

One and Three

Assuming one time constant is #n
times each of the other three,

T
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Fig. 10. Limit chart to aid in assessing per-
formance of five-stage loops with non-identical
time constants.

D=(1+jx)%1+jnx)
=1-3(1+n)x*+nr*+
J(3+n)r—j3n+1)x°

Di=F<=3(1+mn)x* +nxé +
J(3+n)x—j(3n+1)x?

db=101og,,[F? + {(n+3)* -
6F(n+1)ix*
+{3n2-2n+3+2nFix* +
(3n® +1)a* +nPxt)] (45)

Although it contains a negative term,
the whole a* coefficient can never be
negative, so the only possibility of a
peak is when the #2 coefficient is nega-
tive, whence the peaking boundary, as
before, occurs when the 42 coefficient is
zero, or

(43)
(#4)

(n+3)?

Br=4tnwr1)

(46)

and the stability boundary is given by
equating both parts of (43) to zero,
whence,

o, n+3

S
(n+3)(8n*+ 9% +3)

(3n+1)2

and Fs=

(47)

Two and Two
Assuming two pairs of identical time
constants, of ratio » between pairs,
D=(1+jx)*(1+jnx)?
=1—(n®+dn+1)x% + n?xt +
j2x(n+1)(1-na*)
Dr=F—(n*+4n+1)x% +nat +
jJ2r(n+1)(1-nx?)
db=101og ,[F2+ {4(n+1)* -
2(n*+4n+1)Fia? +
CnF + (n*+ 1)} 2% +
20 (n® +1)x% + nhs] (50)
The only possibility of a peak is when
the 4* coefficient is negative, so the peak-
ing boundary is found by equating this
coefficient to zero, or
_2(n+1)*

(48)
(49)

F - -
P dn+ 1 (51)
and the stability boundary by
1 1
,t's’:;and Fs:n+3+; (52)

Curves of expressions (46), (47),
(51), and (52) are plotted in Fig. 8.
Naturally the two-pairs arrangements
has symmetrical curves. The 3-and-1
combination (three acting before one)
has lower boundaries than any other

R2 lc

Fig. 11. This form of step circuit is often used
in long over-all loops with large feedback, to
aid in obtaining stability.

=)

Fig. 12. Practical types of circuit for two-stage loops with ample feedback. These can be ap-
plied equally well to push-pull circuits, but are shown single-ended for simplicity.

AUDIO ENGINEERING e MAY, 1953

29



T

Fig. 13. This is a useful circuit for obtaining

positive current feedback. With the coopera-

tion of transformer manufacturers, it should
feature in future amplifier circuits.

combination (three acting before one)
has lower boundaries than any other
combination of four cutoffs, and so is
not of practical value unless instability
is sought. Notice here that, though the
two-and-two arrangement only ap-
proaches 6 db feedback before peaking
occurs, however large # is made, so the
one-and-three arrangement is better for
minimizing peaking, the two-and-two
arrangement is slightly better for its
stability margin. The lesson here would
seem to be that at least two of the net-
works should be removed beyond the
range by a factor #, and the other two
may have one at the nearer limit, and
one somewhere between the first and
second time-constant limits, dependent
upon whether exact shape of response or
margin of stability is regarded as the
more important factor in design.

Five-Stage Loops
Taking first the case using networks
with identical time constants;
D=(1+jx)"=1-10x*+
Sxbt j5x — j10x° + ju® (53)
Di=F ~10x% + 52 + jx — j10x° + j2°
(54)
db=101og,,[F*+ (25 -20F )x* +
10Fx% +10x° + 545 + 41] (55)

The peaking boundary is given by equat-
ing the 2% coefficient to zero, or F=5/4,
that is 1.938 db.

Using the same method as for four-
stage loops for relating feedback to peak
frequency, and height,

Fe apd +4apf + 6apt+ 5
a 4(1-2p%)
The stability boundary is given by tak-
ing the lowest root obtained by equating
the imaginary part of (54) to zero, this
giving the first phase reversal in the
transfer characteristic,

xs2=5-2\/5=0.528 approx.

(56)

or
xs=0.7266 approx.

and _
Fe=80\/5-175=3.885

approx. or 11.8 db  (57)

whence it is evident that xp must be
plotted between zero and 0.7266 in (56)
to find values of F. Substituting these
values into (55) gives the height of peak

30

to correspond. Figure 9 shows these re-
sults,

Again taking two possibilities for the
non-identical networks:

One and Four

Assume one network has a time con-
stant » times the other four:

D=(1+jx)*1+jnx)
=1=2(3+2n)2% + (1 +4n)x* +
F(4+n)x—j2(2+ 3n)x%+ jnas

Di=F-2(3+2n)2%+ (1 +4n)x* +
J(#+m)x—32(2 + 3n) %% + juas (59)

db=101log [F*+ {(4+n)? -
4(3+2n)F}x®
+{4(n-1)2+2F(1 +4n)}at +
On*x® + (1+4n2 ) 2% + n2x19]  (60)

From which the peaking boundary is
given by

(58)

_ (4+m)?
Fo=g0352n) (61)
and the stability boundary by
>
.1‘32=3+€—21’2+:+;17
n nont
and
Fs:8(5n+4+£') 2+§+L2
n non
—(5611+71+%+%) (62)

Two and Three

) Assume two networks each have a
time constant # times that of the other
three:

D=(1+jx)%(1+ jnr)?
=1 —(3+6n+n?)x® + (2n+3n2 )1t
J(3+2n)x —j(1+6n+3n2)x% + jutas

(63)
Dr=F—(3+06n+n?)x®+ (2n+
3nf)at+j(3+2n)x
—J(1+ 6+ 3n2 )4 + fn2xs (64)

db=101log, [F*+{(3+2n)* -
2(3+6n+n2)Fyat
(3= dn+nh) + 2(2n+ 302 )Fyat +
(1+6n®+3nb)xs
+(2n® + 304 ) 28 pha1o] (65)
From which the peaking boundary is
given by
Foe (3 +2n)?
PE2(3+6n+n?)
and the stability boundary by

3 3 1
=t o

/’9}—124,7_ E.{.‘i.{.i
TN T Y e
and

(66)

Fs= (8n+18+1—2+%>x
n n

: 3

\/9%+711+%-+E+——4i2

- (12¢zz+45n+63+i2—+%+—13)
n n N

(67)

Curves of expressions (61), (62),
(66), and (67) are plotted in Fig. 10, for
values from .01 to 100, as in the other
cases. Conclusions to be drawn from this
are that three of the networks should

have time constants to remove their
cutoffs well beyond the frequency range,
by a ratio n, while the remaining two
may be adjusted according to the fre-
quency response and margin of stability
required.

Step Networks

Figure 11 shows a popular type of cir-
cuit often included in an over-all feed-
back loop to improve stability with large
amounts of feedback. The same circuit
may be applied for instability at either
end of the response, using values suit-
able for the application. To apply this
network in relation to the data here
given, the simplest way is to regard the
circuit as a synthesis of two time con-
stants. The effect of one of these is
inverted and would, if exactly equal to
another somewhere else in the loop,
cancel its effect, leaving the remaining
time constant of the step circuit, opera-
tive at a higher frequency, in its place.
The advantage of this method for im-
proving h.f. stability is that less gain
has to be sacrificed over the pass band in
order to get the required time constant
relationships, the effective plate cou-
pling being R, + R, instead of just R,.
Applied for Lf. stability, one cutoff is
brought into the pass band, but its effect
is offset by the feedback; this saves the
necessity for unduly large capacitors to
obtain the time constants needed by the
straight circuits.

Margin of Stability

It is often not appreciated that input
and output impedances interact with the
feedback in over-all feedback loop am-
plifiers. For example, where negative
voltage feedback is used, the amount of
feedback increases as the load imped-
ance is raised. Similarly at the input
end, where an input transformer is used
particularly, the amount of feedback oc-
curring at high frequencies will influ-
ence the response of the transformer,
by modifying the impedance it “looks
into” (This is assuming that the trans-
former itself does not form part of the
feedback loop, i.e. feedback is injected
in the grid circuit). This accounts for
the fact that amplifiers with wonderful
characteristics often exhibit unpleasant
peaky effects when connected to certain

(Continued on page 53)

Fig. 14. Method of obtaining adjustment of
positive current feedback, using the basic cir-
cuit of Fig. 13 in push-pull arrangement.
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NEGATIVE FEEDBACK

(from page 30)

sombinations of input and output cir- |
:uits, even though the nominal imped-
inces are all correct.

This effect can be divided into two
sarts: (a) the effect of external imped- |
ances on the characteristics of the feed-
sack amplifier ; and (b) the effect of the
impedances presented by the feedback
amplifier to the input and output cir-
suits. From the present viewpoint, the
former is the more important, and usu-
ally has the bigger effect, The feedback
is. calculated on the basis of constant
resistances for input and output imped- |
ances, and with correct values of this
kind the amplifier gives a wonderful
response characteristic; but with a
practical dynamic loudspeaker con-
nected to the output, the load character-
istic is quite different from a constant
resistance, and the feedback loop may
well be approaching its stability bound-
ary, resulting in a pronounced peak in
the response. Some amplifiers of this
type confirm this fact by going into os-
cillation when the output load is dis-
connected altogether.

The author contends for this reason
that a practical requirement for a good
amplifier should be that it is completely
stable, working into any load from open
circuit to short circuit. This does not
mean that it should be expected to de- |
liver full undistorted output into im- |
pedances widely divergent from the
nominal value. The nominal impedance
should be within reasonable limits from
the correct value, and then the inevi- |
table deviations from nominal in the |
loudspeaker impedance frequency re-
sponse (not to be confused with the
loudspeaker’s acoustic response) will
not be likely to cause excessive varia-
tion in the amplifier from its nominal
frequency characteristics.

This requirement would be difficult fo
meet, using large amounts of over-all
feedback. For this reason the author
recommends that feedback be taken over
a shorter loop, including not more
than two stages. This will avoid any
possibility of interaction between input
and output impedances directly due to
the feedback loop. The difficulty is that
it is not easy to employ the large amount
of feedback over shorter loops because
either the gain is unsufficient, if feed-
back is taken from the output trans-
former secondary, or too much power
will be absorbed from the plate circuit,
if the feedback is taken from the pri-
mary.

One step to overcome this difficulty
uses an output transformer either with
tappings on the primary or a separate |
winding, in one of the circuits shown |
at Fig. 12. (This is shown single-ended
for simplicity; in practice push-pull is
used for high-quality work, using the
same principles.)

Some single-stage positive current
feedback can overcome deficiency of
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(with hand volume control)...........
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stand away; in either case, the
quality will be perfectly natural.
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AMPERITE Company, Inc.
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gain and provide impedance reduction.
Positive current feedback could be used
with the circuit of Fig. 13 to produce
zero output source impedance without
causing instability, provided the output
is never short-circuited, but all positive
feedback accentuates any distortion
present. A compromise, using some
positive current feedback combined
with negative voltage feedback can
achieve zero source impedance without
excessive loss of gain, and with rea-
sonable reduction in curvature distor-
tion. The snag is that an extra winding
is required on the interstage or driver
transformer, and that for push-pull
working the output transformer pri-
mary halves require to be separated at
the center tap.

The extra winding on the interstage
transformer is quite small, as it has
practically no power to transfer, be-
having in conjunction with the rest of
the transformer as a current trans-
former of very high ratio, using the
plate resistance of the previous stage to
develop the fed back voltage at the
grids.. Having quite few turns, it can
easily be wound on by hand with the
older types of interstage job, where
there is any room at all to spare.

Manufacturers already make lines of
output transformer with provision for
feedback, using either tappings or sep-
arate windings. Tt is suggested that
drive or interstage types could also be
introduced with a similar provision for
the above purpose. The exact amount
of positive feedback can be adjusted,
where the number of turns is more than
necessary, for the circuit used, by the
arrangement shown in Fig. 14, without
appreciably increasing losses anywhere.

CONTOUR SELECTOR

32)

(from page 3
system to satisfy his particular taste.
Since there are still so many variables
involved in high-fidelity system design,
not the least of which is the fact that the
amplifier may be used with any of a
variety of loudspeaker combinations
which differ widely in frequency char-
acteristics, it is quite likely that the
record equalizer setting may be used
primarily as a point of departure for op-
eration of the tone controls.

In the design of the DB20 we at-
tempted to steer a safe course between
the Scylla of not enough control for
the sophisticate and the Charybdis of
alienating his wife (who pmlml)ly ob-
jected to investing in a hi-fi system
when what they really needed was a
new fur coat for her) by making the
whole business of hi-fi too confusing.
Our record equalizer was designed with
this in mind, and we were on the point
of simplifying the unit by providing
either (but not both) a volume con-
trol or a so-called compensated loudness
control when further study changed our
thinking.

The Fletcher-Munson equal loudness
curves, although they hold only for pure
tones and not for the complex sounds
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