
TRANSFER FUNCTIONS 

WHEN I first mentioned to the Editor that 
I was thinking of saying something about transfer 
functions, his reaction was as if I had been offering 
to write a do-it-yourself manual on how to get into 
orbit. This worried me rather, because up to that 
moment nothing had looked simpler than explaining 
what a transfer function was. One could start by 
defining it as the ratio of output to input of any 
system that has an output and input. One would 
then add a bit of padding to make this clear to the 
dimmest intellects, and there one would be, ready 
to knock off for the week. Even the impressively 
named and highly expensive Transfer Function 
Analysers are basically simple. But now, was there 
a snag? 

Well, there are a lot of very difficult books mainly 
on transfer functions, at about £5 each, and perhaps 
the Editor thought I was going to paraphrase them 
into half an hour's pleasant reading. To put it in 
terse if not very sensitive or sincere contemporary 
speech, he'll be lucky. 

The fact that transfer functions usually do reside 
in such highly mathematical and complicated con­
texts may however, as he suggested, well make 
readers fight shy of them. My object, then, is to 
show that they are something you probably know 
quite well already but didn't recognize under such 
a pompous name. 

I had better start by clearing away a possible 
cause of confusion. Transfer functions are not the 
same as transfer characteristics, though both are 
relationships between input and output. A transfer 
characteristic is a graph of instantaneous output 
voltage, current or whatever, plotted against the 
input ditto. Fig. 1 is an example. A quick way of 
obtaining this kind of graph is to connect a suitable 

Fig. I. This is an example of a 
transfer characteristic. which 
is a graph of instantaneous 
output (voltage. etc.) against 
instantaneous input (voltage. 
etc. ). It is useful for showing 
up non-linearity. A t ransfer 
function is the .. complex .. 

ratio of r.m.S. or peak output 
to input at any frequency. 

oscillator to the input, in parallel with the X plates 
of a cathode-ray tube, and connect the Y plates of 
the same tube to the output. A perfect amplifier 
(or whatever it is being examined) gives a straight 
diagonal line. Curvature shows non-linearity, and 
looping shows phase shift. 

Note I said instantaneous voltage, etc. There is 
another type of output/input graph in which r.m.s., 
peak or average values are plotted. This sort does 
show up distortion, but is less useful for analysing 
it. 

Now that we know what transfer functions aren't, 
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we can go on to see what they are. I have already 
given one definition. In the world of amplifiers, 
the transfer function is often called simply the gain. 
To be more precise it would have to be called 
complex gain, and I would hasten to add for the 
benefit of beginners that "complex" here doesn't 
mean what it does in ordinary language. I dealt 
with that at length in the February 1953 issue (and 
in "Second Thoughts on Radio Theory "). It 
just means taking account of phase as well as magni­
tude. But of course there is an output/input ratio 
in many systems which don't yield a gain in the 
literal sense. Such things as filters, attenuators 
and transformers. And the same idea can be­
and nowadays commonly is, hence the proliferation 
of difficult books-applied to mechanical systems, 
especially those with feedback, such as servomechan­
isms. It is even being applied to chemical engin­
eering. 

Forms of Expression 
There is no difficulty at all, then, in understanding 
what a transfer function is. But of course if you 
have a complicated system, its transfer function is 
likely to be complicated too. And all sorts of very 
sophisticated mathematical techniques have been 
devised-some of them comparatively recently­
for dealing with such. Another thing that leads 
to difficulty is non-linearity of the system. And 
still another is non-sinusoidal waveform of the signal 
applied to the system. Just now we are going to 
stick to simple sine-wave signals and linear systems. 
Even a so-called ultra-linear amplifier is not perfectly 
linear, but it should be at least a good approximation 
to the ideal linear system. 

First let us review the various forms in which 
transfer functions can be expressed. You may know 
them already, but one can hardly go over it too often. 

Suppose you put a signal of, say, O.IV r.m.s. 
into an amplifier and get 23V out. Then the ratio 
of V 0 to Vi is 23/0.1 = 230. That is what would 
usually be called the voltage gain. It is also the 
magnitude of the amplifier's transfer function. The 
other part of the same function is the phase difference 
between Vi and Vo. (Mathematicians tend to call 
these two parts the modulus and argument.) If 
V 0 lags 32° behind Vi' then the phase difference 
--often denoted by 4>--is -32°. In more strictly 
mathematical terms it is -0.56 radians. (A whole 
cycle is 360° or 21T radians.) One way of writing 
this particular transfer function is therefore 
230/-0.56. 

A direct graphical representation would be as 
two sine waves, one (representing the output) 230 
times the amplitude of the other (representing the 
input) and 32° behind it in phase. But sine waves 
are difficult to draw, and don't show the important 
quantities clearly, so a preferred form is a straight 
line 230 units long, drawn at an angle of 32° clock-
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Fig. 2. Here is the vector 
(more correctly phosor) 
form of 0 transfer func­
tion for one particular 
frequency. 

Fig. 3. If the phasors of a 
system are plotted for a 
representative selection 
of frequencies, their tips 
trace out a Nyquist type 
of diagrom, as in this example. 
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Fig. 5. Simple example of a system for which a transfer function exists. 
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Fig. 4. Relationship 
between Cartesian or 
rectangular transfer­
function co-ordinates. A 
and B. and the corres­
ponding polar co-ordi­
nates, M and cD. 
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::r 
wise with reference to the conventional zero ("3 
o'clock")-Fig. 2. This sort of line is commonly 
called a vector, but since that name is not entirely 
appropriate the tendency nowadays is to call it a 
phasor. Sometimes an arrow head is stuck on the 
end farthest from the point around which the line 
is slanted to indicate q" but because the natural 
interpretation of an arrow head is motion in the 
direction in which it points, which would be quite 
wrong here, 1 prefer a little circle at the other end 
to mark the centre. 

Mathematically, a transfer function is what is 
called an operator. The thing it operates on is the 
input signal. The effect of the operation, in the 
example in Fig. 2, is to multiply the magnitude 
(voltage, in this case) by 230 and delay its phase 
by 32°. If this amplifier were followed by another, 
without any interaction except that the output of the 
first provided the input of the second, it is pretty 
obvious (1 hope) that the transfer function of the 
combined amplifiers would be obtained from their 
separate functions by multiplying their magnitudes 
and adding their phase angles. So if the second 
function was, say, 170/59°, the combined function 
would be 230 x 170/=32° + 59° = 39,100 /+27° 
Alternatively the magnitude can be expressed in 
decibels, which, being the logarithms of the gains, 
are combined by adding, like the phase angles. 
This is one of the reasons for preferring dB. 

The most important thing about a transfer function 
is that it varies with frequency. Often one wishes 
it didn't, because for many purposes the ideal 
amplifier is one that treats all frequencies alike. 
But while it is possible to approach this ideal very 
closel)' over quite a useful band of frequencies, there are 
always limits due to the inevitable stray capacitances 
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and inductances, to say nothing of the more involved 
effects in transistors. There are instruments­
the so-called transfer function analysers-for measur­
ing the complex gain at different frequencies. The 
question then arises, how to show the results, since 
both magnitude and phase vary with frequency. 
The length and angle of a phasor, as in Fig. 2, show 
these two quantities at a single frequency, so one 
method is to draw other phasors for other frequencies. 
Fig. 3 is an example. The figures denote the fre­
quencies, and the dotted line tracing out the end of 
the phasor as it varies with frequency is particularly 
valuable in negative feedback problems, where as a 
Nyquist diagram it shows at a glance whether 
there is any possibility of the system oscillating. 

But when one is interested in how successful or 
otherwise the system is in working uniformly over a 
certain range of frequency, it is usually more helpful 
to plot magnitude and phase separately against 
frequency. Often the phase graph is omitted. We 
then have that even better known type of diagram­
the amplitude/frequency characteristic. 

Conversion 
The Nyquist diagram is a particular kind of polar 
diagram (Fig. 3), the two parts of the transfer 
function being specified in polar co-ordinates; 
angle and radial length. Most graphs are plotted in 
Cartesian or rectangular co-ordinates, and the two 
parts of transfer functions can be alternatively 
specified in them. They are known as the in-phase 
and quadrature components. The corresponding 
written form of the transfer function is A + jB, 
in which j is an instruction to reckon the quantity 
to which it is attached as a vertical distance (positive 
upwards) instead of horizontally to the right. The 
two types of co-ordinates are related as shown in 
Fig. 4, thus: 

M = A + jB = v' A2 + Ba 
B 

tan q, = Pi. 
also A = M cosq, 

B=M sin q, 

A reason why it is necessary to be able to convert 
from one form to the other is that some methods of 
measuring transfer functions give the results in one 
form and some in the other, and the particular 
method available�r most convenient-may not 
be the one that fits best into one's calculations. 

Obviously (looking at Fig. 4) the A and B values 
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"TURNING FREQUENCY" 

Fig. 6. Method of quickly drawing a frequency characteristic 
curve for the Fig. 5 system. This graph has been" normalized .. 
by writing the scale in terms of '121fT, so that the" turning 
frequency " is at J. 
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can be used for plotting phasors and therefore a 
Nyquist diagram. Alternatively the polar quantities 
can be plotted separately against frequency as 
Cartesian co-ordinates, giving gain/fre�uency and 
phase/frequency characteristic curves. 

In case the frequent reference to amplifiers has 
given anyone the impression that transfer functions 
refer mainly to them, let us take as an example of 
a " system" the simple one shown in Fig. 5. This, 
of course, often occurs as part of an amplifier. One 
of its roles is as a device for coupling one valve 
stage to the next without imposing the d.c. compo­
nent of the anode voltage on the grid. In this role 
the variation of transfer function with frequency, 
though necessary for separating signal frequency 
from zero frequency, is undesirable within the work­
ing frequency range, and the aim is to avoid it as 
much as practicable. But the same device with 
different values of C and R is used deliberately in 
tone-control arrangements as a bass-cut device. 

If the input signal is reckoned as the voltage Vi 
across the input terminals, and the output is the 
voltage V 0 across the output terminals, which 
are not called upon to supply any appreciable current 
to a load (Le., they are practically an open-circuit), 
then the system can be regarded as a potential 
divider, in which the transfer function is the ratio 
of R to the whole impedance of C and R in series: 

Vo R 

Vi = R + l/jwC 
Because the transfer function is a function of 

jw (= j27Tf) it is often written as F (j w). So 

. R jwCR 

F (jw) = R + I/jw C 1 + jw CR 
The thing to notice here is that the values of C and 

R don't matter individually; it is their product 
CR that counts. This CR is well known as the " time 
constant " of the system, reckoned in microseconds 
if R is in ohms and C in rnicrofarads. (CR in the 
formula must then be multiplied by 10- 6 to bring 
it to seconds.) The value of the transfer function 
at any given frequency depends on it alone. So the 
tendency nowadays is to work in time constants, 
and accordingly we will substitute T for CR. 

In looking at the above transfer function again 
to see how it varies with frequency, we note first 
that when the frequency is zero (w = 0), F (j w) is 
zero. That, of course, is as it should be for blocking 
d.c. At the other end of the scale, when w approaches 
infinity, F Ciw) approaches I; so at very high fre­
quencies the system passes practically the full signal 
voltage. But the most significant frequency is the 
one that can be regarded as a sort of change-over 
point between these two extremes. It is conveniently 
defined by 

1 1 
cv =- or j= --

T 27TT 
because that makes w T = I, and 1 + jl = y2, 
and l/y2 is 0.707, which in terms of voltages or 
currents is almost exactly 3 dB down on 1. In terms 
of power, it is exactly a half. The effective frequency 
bandwidth of an amplifier is usually reckoned 
between the upper and lower half-power points. 

At frequencies above zero but so much below 
1/27TT that there is little difference between 1 + jwT 
and I, the magnitude of F Ciw) is very nearly pro­
portional to the frequency. If the frequency is 
halved the voltage amplitude is halved. The way 
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this is usually put is that the amplitude/frequency 
characteristic slopes 6 dB per octave. To be a uni­
form slope, both amplitude and frequency scales 
must be logarithmic, which is usually achieved by 
using special graph paper obtainable for plotting 
dB against logarithmic frequency. 

Simple Rules 
Putting all the foregoing information together 
provides us with simple rules for making a quick 
sketch of the amplitude/frequency characteristic 
of any circuit comprising one resistance and one 
reactance. Fig. 6 shows them applied to the Fig. 5 
circuit. Locate the point on the frequency scale 
where j= 1/27TT ( = 1/27TCR); the "turning fre­
quency" or " corner frequency". If C and R are in 
rnicrofarads and megohms, T is in seconds and j 
in c/s, but usually it is more convenient to divide 
106 by 27T times the number of microseconds. Draw a 
horizontal line at the 0 dB level from this point 
rightwards, and a line sloping to the left downwards 
at 6 dB per octave, as shown dotted. Mark the 
- 3 dB point at the turning frequency and draw a 
smooth curve through it to approach the two straight 
lines. Incidentally, the slope at this - 3 dB point 
should be 3 dB per octave. As a further guide to 
drawing the curve, it is helpful to note (as can 

<j; 45' 
I-----j--I---� 

30' 

15' 

o 0'2 0'5 I 

t 
"TURNING FREQUENCY" 

Fig. 7. Phase/frequency 
curve corresponding to 
Fig. 6. 

25 x _1-21rT 
FREQUENCY (c/s) 

easily be shown by calculation) that at half and double 
the turning frequency the curve is very nearly 
1 dB below the straight lines, as shown . 

This type of diagram owes its convenient straight­
line-approximation feature, with the facility for 
filling in the curve accurately enough for practical 
purposes without any actual plotting, to the fact 
that both scales are logarithmic. As we shall see, 
it has other advantages. 

What now about phase angle? As we have seen, 
the formula is 

B 
tan cP = 'A 

where B is the quadrature component and A the 
in-phase component. The catch is that B can be 
either negative (as in Fig. 4) or positive, and this 
decides the sign of cP. It can be found mathematic­
ally by multiplying the transfer function (in this 

case 
1
17�T

) 
above and below the line by l-jwT 

to eliminate j from the denominator, and then 
noting the sign of the j term in the numerator. 
In this case it is positive. But the easier way is to 
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Fig. 8. Table of all the combinations of one resistance and one reactance, and of one reactance only, and their frequency 
characteristics (magnitude and phase) and t ransfer functions. 

remember that the current through a capaCltIve 
circuit (such as Fig. 5) leads the applied voltage, 
and as the output voltage-being taken across a 
resistance-is in phase with the current, the out­
put voltage must lead the input voltage; so its phase 
angle is, accordirlg to convention, positive. 

It is convenient to plot the phase angle against 
the same logarithmic frequency scale as for the 
" gain," not only for making the same scale do for 
both, but also because the curve turns out symmetri .. 
cal that way; one half of it is exactly the same as 
the other turned upside down and left to right­
Fig. 7. Note that the angle scale is linear; this is 
not only to preserve the said symmetry but also 
because (as we have seen) the overall phase angle 
of a combination of transfer functions is the simple 
algebraical sum of the separate angles. 

As Fig. 7 shows, a rough approximation to the 
curve is obtainable by drawing a straight line from 
one-fifth to five times the turning frequency (where 
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the angle is always 450). The true curve almost 
exactly coincides with this line from half to double 
the turning frequency. It can be sketched in by 
plotting points at five times (11.30) and one-fifth 
(900 -11.30) as shown. Farther away still, the depar­
ture of the curve from 00 and 900 tails off in the 
same ratio as the frequency varies. 

If C in Fig. 5 is replaced by R, and R by L, and 
F (iw) is calculated, precisely the same result will 
be found, if it is remembered that the time constant 
of an LR circuit is L/R. So Figs. 6 and 7 hold good 
for this system too. 

If in either of these two systems the resistor 
and reactor are interchanged, the appropriate 
graph is the mirror image of Fig. 6, falling from 
OdB at zero frequency to -3dB at 1/27TT and 
thereafter tending towards a downward slope of 
-6dB per octave. The actual formula is 

1 
F(j w) = .,-------:-= 

1 + jwT 
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In all these four systems we assumed that the 
input voltage was constant and the load impedance 
was infinite. If we pass a constant current through 
R and C or L in parallel, the voltage across these 
varies in a similar manner; Fig. 6 for R and L, and 
its image for R and C. By passing constant current 
through R and C or L in series, we get the same 
output voltage curves upside down. Because we 
are converting a current signal into a voltage signal 
the "dimensions" of the transfer functions we 
have been using for voltage-to-voltage (a pure 
number) would be wrong; on working it out we 
find they must be multiplied by the constant factor 
R. So 0 dB corresponds to the output voltage 
obtained by passing the constant input signal current 
through R. 

If you remember my enthusiasm for the principle 
of duality (" two formula: for the price of one ") 
you will expect me to include the duals of the fore­
going arrangements, obtained by exchanging current 
and voltage, inductance and capacitance, resistance 
and conductance, and series and parallel. The 
duals of constant current input and open-circuit 
voltage output are therefore constant voltage input 
and short-circuit current output, and the transfer 
functions of the systems (as modified by the dual 

exchanges) are the same as before, except that of 
course the factor R for resistance becomes l/ R for 
conductance. The original series fits the con­
ditions of feeding into a negatively biased valve­
practically an open circuit-and the new one approxi­
mates the situation when driving a transistor, if 
the resistances and reactances of the "system" 
are relatively high. 

By now we have accumulated quite a variety of 
systems covered by only four stock shapes of fre­
quency characteristics--<>r, rather, one stock shape, 
which can be made up as a template, turned this 
way or that. A single curve likewise serves for all 
the phase graphs. Fig. 8 displays all the possible 
combinations of one resistance and one reactance, 
with the addition (for the sake of completeness) of 
the still simpler systems made up of one reactance 
only. These give continuous 6 dB-per-octave 
slopes and constant 90° phase shifts. 

The systems shown, although so simple, are of 
real practical value, as any tone-control designer 
knows. They are also real practical nuisances, as 
any feedback-amplifier designer knows. 

Next time we shall see how more elaborate trans­
fer functions can be analysed into combinations of 
these simple ones. 

MANUFACTURERS' PRODUCTS 
NEW ELECTRONIC EQUIPMENT AND ACCESSORIES 

Suction Handling Aid 
AN AID to the handling of small pieces of, say, semi­
conductor material has been produced by the Solo­
Seeda Limited. In both of the models air is drawn 
in through a nozzle which is designed to receive and 
hold the object to be lifted; thus special types are avail­
able for individual purposes. The makers claim that 
lifting, moving and dropping again at the rate of 100 
objects per minute is relatively simple. Releasing the 
held object with the model fitted with a pump is accom­
plished by uncovering a small suction-release hole in 
the nozzle holder. Retail prices are: hand model with 
squeeze bottle Ss; model with water-operated pump 15s; 
both including a standard nozzle. 

Solo-Seeda Limited, Spencer Road, Berkswell, 
Coventry, Warwickshire. 

Field Strength Indicator 
CARRIER level measurement in Bands I, 11 and III 
can be undertaken with the "Telecomm" Indicator 

R.E.Ec "Tele'comm" field strength indicator. 
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Type FS4/T. This instrument, which uses transistors 
throughout, employs a 13-position turret tuner covering 
all f.m. and television channels, and indicates field 
strength directly on a moving-coil meter calibrated from 
lOIN to 30mV. The Indicator can be supplied to 
cover other channels in the range 30 to 220Mc/s. The 
makers of the FS4/T are R.E.E. Telecommunications 
Ltd., 15a Market Square, Crewkerne, Somerset. 

V.H.F. Frequency Meter 
ONE result of the Wayne Kerr-Gertsch agreement is 
the appearance on the British market of the v.hJ. fre­
quency meter FM-7, which will measure and generate 
frequencies to an accuracy of 0.0002%. Both amplitude 
and frequency modulation are available-30 % a.m. and 

Wayne Kerr-Gertsch FM-7 frequency meter, with a fre­
quency converter in the lower half. 
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POLES AND ZEROS By .. CATHODE RAY" 

NOTWITHSTANDING their higher-mathe­
matical sounding name, transfer functions (as we 
saw last month) are nothing more than output­
input ratios in which phase as well as magnitude is 
taken into account. These both vary with freq­
uency, so a transfer function is essentially a 
function of frequency, and (when sine waves are 
concerned) is usually denoted by F(jw), in which F 
stands for "function of," w is (as usual) 21T times 
the frequency, and the j tells us the function is 
" complex "; i.e. , comprises phase angle as well as 
magnitude. So at any particular frequency its speci­
fication consists of two numbers. 

In one type of specification these numbers are 
simply the magnitude and phase angle. They are 
then often written in the form A L q,. A and q, are 
polar co-ordinates. So they can be represented 
graphically by a straight line, A units long, inclined 
at an angle q, to the zero position, which is conven­
tionally " 3 o'clock." Alternatively, a transfer func­
tion can be expressed in the familiar cartesian or 
squared-paper co-ordinates, A cos q, being the " in­
phase" or " real" or horizontal one, and A j sin q, 
the" quadrature " or (as the j indicates) the" imagin­
ary " or vertical one. 

Among the many systems that have transfer func­
tions are practically everything with an input and 
output-amplifiers, tone controls, filters, transform­
ers, servomechanisms, and even factory processes. 
Last time we considered every possible combination 
of one resistance and one reactance-called first­
order systems-and also of one reactance only, with 
voltage or current input and output. We found 
that one simple shape of amplitude/frequency 
characteristic and one shape of phase/frequency 
characteristic, placed in any of four positions, cover 
all 16 first-order systems. If last month's issue has 
mysteriously vanished, Fig. 1 may serve as a reminder. 
Each of these four positions corresponds to a transfer 
function containing only the terms 1 and jwT, 
where T is the time-constant of the system-eR 
or L/R. 

Often several of these first-order systems occur 
combined, and as an example of this I have chosen 
the standard playback characteristic for disk records, 
now laid down in BS 1928:1960 to end a long era of 
confusion. As we have seen, there are various ways 
in which a transfer function can be expressed, and 
one form of this particular sample was given by 
T. M. A. Lewis on p. 121  of the March 1961 issue, 
preliminary to a description of a transistor amplifier 
providing the characteristic so specified: 

FG ) = 

A( 1 + jwT2) 
w 

(1 + jwTl) ( 1 + jw Ta) 

where A is the amplification at zero frequency­
as can be seen by putting w = 0 throughout. 

Here we obviously have three of the simple first­
order transfer functions multiplied together, which 
means that signals are subjected to the effects of all 

WIRELESS WORLD, MAy 1962 

MORE ABOUT TRANSFER FUNCTIONS 

three. One of them, having the form 1 + jwT, is 
type 4 (Fig. I), and the other two, 1/(1 + j wT), are 
type 2. The standard time-constants for long-playing 
records are: T 1 = 3,180 fLsec, T 2 = 3181' sec., 
T 3 = 75 fLsec. The first two numbers look a little 
odd; they were chosen so that when multiplied by 
21T the results are round numbers: 20,000 and 2,000. 
The turning frequencies-those that make wT = 1-
are 106 divided by these numbers, so are 50 c/s 
and 500 c/s. The 75 fLsec., presumably chosen to be 
the same as for f.m. de-emphasis, gives 2, 120 c/s 
as the third turning frequency. 

To draw the graphs of gain and phase against fre­
quency (Fig. 2) just use the simple rules given last 
month for each of these three turning frequencies, 
and combine them by adding. For both these pur­
poses it is necessary to use a logarithmic scale of 
frequency-normal practice anyway-and also for 
gain-which again is normally achieved by reckoning 
it in dB. Phase angles are additive, so for them a 
linear scale is correct. Fig. 2 is an example of what 
is sometimes called the Bode diagram. 

From 50 c/s to 500 c/s the linear approximation 
is a 6 dB-per-octave downward slope. Incidentally, 
if you have made the dB scale so that 6 dB on it 
occupies the same distance as a 2: 1 frequency 
ratio you can draw these slopes wilh a 45° set­
square. From 500 c/s onwards the downward 
slope still applies but is exactly cancelled out by the 
upward (type 4) slope that begins there. So the 
resultant is a horizontal section. This ends at 

et> 
+90° 

4-
45° 

45° CURVE TRANSFER TYPE FUNCTION 
0 

-90 I 1 
jwT 

l+jwT 

dB 2 I 
l+jwT 

3 l+jwT 
jwT 

+� 
4- l+jwT 

-� 

TURNING FREQUENCY 
Fig. I. All systems comprising one resistance and one reactance, 
with an input and output, voltage and/or current, have transfer 
functions in this list of four, with characteristic curves as shown. 
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2,120 c/s, the second type-2 turning frequency. 
It is so near 500 c/s that when the 3 dB and 1 dB 
points are plotted those at and near 1,000 c/s are 
on opposite sides of the line. The curve must 
therefore be drawn to pass midway between them, 
as shown. 

All this need take only a couple of minutes, and 
the result is practically as good as (and more likely 
to be correct than) a curve drawn from points 
obtained by the very tedious straightforward com­
putation of the whole transfer function. (Try it 
and see!) 

The obvious but inadvisable method of obtaining 
the composite phase-angle curve is to draw the 
individual type 2 and type 4 curves and add their 
ordinates. It is easier (and uses half the space) 
to draw the negative of the type 4, which is the 
same as a type 2, and then to add the difference 
between the curves for T 2 and T 3 (picked out by 
dividers) to the one for TI. This difference is 
greatest around 1,000 c/s and causes the hump 
in the resultant curve. 

The performance represented by Fig. 2, need 
one say, is obtained by combining one type-4 
resistance/reactance pair with two type-2. And 
that is where the difficulties begin. The pairs can't 
just be connected in cascade, as in Fig. 3 for exam­
ple, because each is supposed to work from and 
into infinite or zero impedance. In practice one 
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can allow impedances that are respectively much 
larger or much smaller than the impedance of the 
transfer circuit itself. But working into or from 
another transfer circuit generally won't do. One 
solution is to use suitably arranged valves or tran­
sistors between each. Some are needed anyway 
to amplify the gramophone signals. But not usually 
as many as four. 

So this is the cue to introduce the slightly more 
complicated system shown in Fig. 4. It is easy 
to work out its transfer function: 

F(jw) VD 
VI = 1 :--C + RI + R2 JW 

1 + jwCR2 

1 + jwT2 
1 + jwTl 

where TI = C(R1 + R2) and T2 = CR2• The 
third time constant can be brought in with an 
independent simple type-2 circuit. This, in fact, 
is basically what T. M. A. Lewis did in his ampli­
fier already mentioned, though he used a counter­
part of Fig. 4 in a negative feedback connection. 
His type 2 was in the output circuit of the amplifier. 

Measurements showed the 
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-600 
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whole thing worked extremely 
well. Please don't ask me to 
tabulate every possible combi­
nation of one reactance and two 
resistances; try Heinz. The 16 
varieties with one reactance and 
one resistance were enough of 
an effort. Suffice to say that 
Fig. 4 is one of many possible 
examples of what is known as a 
step circuit, for a reason that is 
clear if one looks at the straight­
line approximation to its ampli .. 
tude/frequency characteristic­
Fig. 2 below 2,120 c/s. The 
limited phase shift is one reason 
for its use in negative feedback 
amplifiers, as I explained in my 
treatise on the use of the Nyquist 
diagram in the January, 1956, 
issue. In this connection it is 
worth noting that if the two 
curves of the Fig. 2 type are 
arranged on the paper so that 
the - 1800 level for one coincides 
with the 0 dB level for the other, 
this common level corresponds 
with the critical point in the 
Nyquist criterion for instability. 
The vertical distance below it of 
the gain curve at the point 
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o where the phase curve cuts 

� it Cif it does) is the gain margin 
of stability. And the vertical 
distance above it of the phase 
curve at the point where the 

0 

gain curve cuts it (if it does) is 
Fig. 2. Characteristic curves (Bode diagram) for standard fine-groove disk play-back 
equalizer. drawn from inspection of the t ransfer function. The straight lines are the 
.. skeleton." giving a first approximation to the curves. 

the phase margin of stability. 
S o  t h e r e  i s  n o  n e e d  t o  

(Continued on page 227) 
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Fig. 3. This way of lumping together three elementary systems 
would not give a result equal to the product of their separate 
functions. because the systems would be incorrectly terminated. 

draw a Nyquist diagram to find these quantities. 
For the fun of it I tried extending the same prin­

ciple as in Fig. 4 to include all three time constants 
in one potential divider, shown in Fig. 5. The 
working-out, in case anyone is interestt:d, appears 
as an appendix. A practical snag about this circuit 
is the inductor. Being of the order of henries, it is 
relatively expensive and liable to pick up hum. 
A minor comfort is that one doesn't have to keep 
its resistance low, for that can be anything up to 
and including R I ' And the circuit is relatively easy 
to calculate, all the components being in series.  

As many as three alternative three-in-one net­
works using two resistors and two capacitors were 
shown by W. H. Livy in the January, 1957, issue, 
p. 29. These are easier to provide in practice, but 
the formula: are a little less simple. 

The transfer function for any of these, or for 
Fig. 5, has two 1 + jwT factors in the denominator, 
so squared terms are involved and the description 
" second-order " applies to it and the corresponding 
network. 

And so one could go on, if necessary into higher 
orders, with at each step a vast extension in the 
variety of system and the area of paper and length 
of time occupied in computation by the straight­
forward complex algebra we have been using. So 
several more advanced mathematical techniques 
have been developed to shorten the work. We 
begin to see, then, that although transfer functions 
are basically simple there can be quite a lot to learn 
about them; hence the expensive books thereon. 

The method of poles and zeros has become stan­
dard study in America at a fairly early stage in 
communications, but I have never seen it men­
tioned in Wireless World. So I shall have to be 
very introductory. 

Right: Fig. 5. This 
second-order system is 
equivalent to three ele­
mentary systems. and can 
be designed to yield the 
Fig. 2 curves at one go. 

Left: Fig. 4. Example of a 
step circuit. equivalent to 
two elementary systems. 

Left: Fig. 6. Example of an 
elementary first-order sys­
tem for pole-zero practice. 
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We have become used to seeing transfer func­
tions with numerator or denominator, or both, 
made up of factors of the form (1 + jwT). The 
variable quantity is w ( = 2 7Tf) and T is a measure 
of the component values. If w is made equal to 
j/T (or f = j/27TT), than j wT = j2 = - 1, and the 
factor is zero. So if the factor is in the numerator the 
whole transfer function is equal to zero. If on 
the other hand it is in the denominator the transfer 
function goes to infinity. 

" So what? " you may say. Imaginary frequency 
(as denoted by the j) is nonsense, so these situations 
can never arise and the whole exercise is pointless.  

Not quite. The foregoing is a device for construc­
ting a type of diagram that is helpful in the study 
of networks. It is closely related to what is known 
as the Argand diagram, which we used last month 

Right : Fig. 7. Argand 
diagram relating to Fig. 6. 

R 

X 
=jwL 

Left : Fig. 8. Same as 
Fig. 7 but reduced in 
scale by dividing 01/ the 
s ides by R. 

for our approach to transfer functions. The relation­
ship will probably be easier to follow if we take a 
simple example, Fig. 6. Fig. 7 is its Argand dia­
gram for impedance. The value of R is measured 
along the positive " real " axis, and the reactance of 
L is measured along the positive " imaginary" 
axis. (Capacitive reactance is measured along the 
negative imaginary axis .)  The impedance, Z, of 
the two in series is represented in magnitude by 
the length of the sloping line, and in phase by its 
angle of slope, cp. It is, of course, the vectorial sum 
of R and j wL. The transfer function is 

F(jw) = 
Vo 

= 
� 

VI Z 
Substituting R + jwL for Z gives us F(j w) = 

1 + \wT, 
the standard form, as in Fig. 1. R and 

Z must be reckoned vectorially, to give us the 
complete transfer function-magnitude and angle. 
The magnitude alone, denoted by I F(jw) i , is the 
ratio of the magnitudes of R and Z, represented 
by the lengths of two sides of the triangle. 

X is the variable quantity, directly proportional 
to frequency, f. One can visualize the length of the 
vertical line increasing from nothing (at zero fre­
quency) and the resulting changes in the reciprocal 
length and angle of the Z line, which we represented 
by the type 2 curves in Fig. 1. 

The transfer function, being the ratio of two sides 
of this triangle, is quite unaffected by altering the 
scale of the diagram. So we are in order in dividing 
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all the sides by R, giving Fig. 8. This brings the 
length of the R line to 1, so that F(j w) is simply the 
reciprocal of the length of the sloping line. 

In these Argand diagrams, " real " values of w are 
measured upwards, because they are prefixed by 
a j .  Now note what would happen if (without 
bothering to consider whether it makes physical 
sense) we put w = j /T, as suggested earlier. This 
brings in a second j ,  rotating the direction another 
quarter-turn anticlockwise. An alternative way of 
looking at it is to multiply the two j s, making - 1 ; 
either way it means that w must be measured along 
the negative real axis; i .e.,  to the left. And as its 
magnitude is 1, its length coincides with the horizon­
tal side of the triangle, and the sloping line collapses 
to nothing, making Z/R = O  and R/Z infinity, as 
predicted. 

This seems a fantastic way of approaching the 
Argand diagram, which in our simplicity we have 
been using happily from the start without any of this 
crazy mathematical philosophy. But if we alter the 
scale of our triangle once more, as in Fig. 9, some 
method begins to be discernible in the madness. 
Here we have divided all round by 2 1TT as well as 
by R, with the result that the vertical axis is now 
definitely a scale of frequency, not depending (as 
in Figs. 7 and 8) on any particular circuit values. 
This removes the advantage of Fig. 8, that the 
reciprocal of the length of the sloping line (to scale) 
alone gives the magnitude of the transfer function. 
In Fig. 9 we must revert to taking the ratio of the 
two lines-l /2 1TT to Z/R2 1TT. We can, if we like, 
regard 1 /2 1TT as a scale factor that has to be brought 
in. To make this scale factor stand out clearly we 
can write the transfer function in this form: 

1 1 
1 '1 2 1T  T + J 

If we were concerned only with systems as simple 
as our example, Fig. 6, we would obviously have 
made an indifferent bargain in exchanging Fig. 8 
for Fig. 9. The reward comes with more complicated 
systems. Take our gramophone equalizer, for 
example. It has three time constants, so there will 
be three corresponding points where /= j/21T T. One 
of them, T 2' gives a zero value of the transfer func­
tion, and this point is called a zero and marked O. 
The others, T 1 and T 3' give infinite values, as in our 
simple example, and are called poles and marked X 
(Fig. 10). 

We now see the advantage of using a frequency 
scale, for it is common to all three-and to as many 
others as a still more complicated system might require. 

Fig. 10  has been drawn for one particular value 
of frequency, 11 ' As the frequency varies, all three 
slopes vary accordingly, those starting from poles 
giving reciprocal measures of the corresponding 
component transfer functions of the system, and the 
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I 
2 1T T  

j wT 
2 1TT 
=jf  

Fig. 9 . . Same as  
Fig. 8,  multiplied 
by 1127fT. 

Fig. 1 0. Po/e·zero diagram 
for system corresponding to 
Fig. 2, with d lines drawn 
for a typical frequency. 

one starting from a zero giving a direct measure of its 
transfer function. 1 /2"  T\ is of course 50, 1 /2 1T  T2 
is 500, and 1 /2 1T  Ta is 2, 120, those being the turning 
frequencies of the system. . 

If we remember that the function for the system 
as a whole is obtained by multiplying the magnitudes 
of the separate ones, and adding their phase angles, 
we can make general rules for using a pole-zero 
diagram for this purpose :  

( 1 )  The magnitude of the overall transfer function 
is obtained by multiplying together the distances of 
all zeros from the point representing the selected 
value of frequency, and the reciprocals of the dis­
tances of all poles, each di stance having been divided 
by the appropriate 1 /2 "  T. 

For instance, in Fig. 1 0, at the frequency for which 
the lines are drawn, 

I F(j w) 1 = /1 �a' 2 " T2 � .  ITl ITS 
2 1T  Tl .21T  Ta dI d3 fr2 

The IT! IT 3/ln is of course a constant, the same for 
all signal frequencies, so only needs to be �omputed 
once for any circuit . 

(2) The phase angle of the overall transfer function 
is obtained by adding togcther all the �eparate 
phase angles, those at zeros bdng reckoLcd positive 
and those at poles negative. 

So in Fig. 1 0  
4> = 4>2 - 4>1 - 4>3 

Fig. 1 0  is a pole-zero diagram to which d lines 
have been added to apply it to a particular frequency, 
represented by the typical point marked li on the if 
scale, from which they radiate. The pole-zero 
diagram itself includes only the axes and the 0 and X 
points .  From what has gone before you might 
easily assume that these points must all lie on the 
" negative real " axis .  Certainly they do for all 
systems of the types we have been considering. 
But complex frequency has physical meaning and 
the poles and zeros can appear almost anywhere. 
Fig. 1 1  is an example. 

But let's  not be led away by complexities of this 
sort before we have seen how our more familiar 
Fig. 10 works. If we start from zero frequency, 
we see that all the angles begin to increase from 
zero, but the rate they do so is inversely proportional 
to the distance of the poles or zeros from the origin. 
So 4>1 increases comparatively fast, "'2 only one 
tenth the rate (on a diagram drawn to scale), and 4>3 
at less than one fortieth. Similarly d1 begins to 
lengthen much faster than d2 and da. In other 
words, at frequencies up to and somewhat beyond 
ITl the whole system behaves almost as if it were a 
simple type-2 circuit.  

As can easily be proved, each angle varies fastest 
at its turning frequency, and likewise the ratios of the 
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sides . So at 500 c/s the type-4 part of the system 
is the major influence, overhauling the negat ive 
phase angle </>1 >  which is now growing comparatively 
slowly, and reducing the rate at which the " gain " 
is falling off. At still higher frequencies, around 
2,000 c/s, the second type 2 comes into its own, 
speeding up the fall-off and phase lag again. 

But we see that the total phase shift can't exceed 
_ 900 however high the frequency goes; in fact, 
it can't quite reach it. By that time all three d lines 
are practically equal in length, so d2 cancels out dl 
and da is increasing linearly, indicating an inverse 
linear fall-off in gain (at 6 dB per octave, as we know). 

With a little practice one can quickly visualize 
the performance of a system from its pole-zero 
diagram. It is easily seen that a pole and a zero 
tend to cancel one another out as they come closer 
together on the diagram. And several poles (or 
zeros) close together indicate a very rapid rate of 
fall-off (or growth) in gain and increase in phase 
shift at frequencies about equal to their distance 
from the jf axis. 

A further stage of progress in the art is to draw a 
pole-zero diagram to represent the performance 
you want, and then use it to work back to the network 
that will give it. 

Still heeding the warning against trying to run 
before learning to walk, however, we make quite 
sure we know how to deal with a simple type 1 or 
type 3 circuit. Fig. 12  is a type-l example, which 
incidentally we studied last month. If we take its 
transfer function in the form 

1 
1 

1 +
-;--T J W  

(1)  

we will be disconcerted to find that the condition 
for making the denominator zero (and thereby 
establishing a pole) is the same as for 

1 
1 + j wT 

(2) 

which is a type-2 circuit. This is because 1/ - 1  = 

- 1 .  Yet type 2 has an exactly opposite performance, 
frequencywise. The explanation of this paradox 
is that ( 1 )  has a zero too, the condition being f = O. 
When that is substituted, the denominator goes to 
infinity. Alternatively, you can multiply ( 1) above 
and below by j w T to obtain the form I preferred: 

j wT 

1 + jwT 
( la) 

To make the next step inescapably clear, I'll write 
this 

0 +  j wT 
. .  ( lb) 

1 + jwT 
So besides the pole at j /27TT there must be a zero 
at f = O. The complete pole-zero diagram is there­
fore Fig. l3, and is in accordance with known fact 
by making the gain zero at zero frequency. 

o 

o 

( a. )  ( b ) 
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Fig. 1 1 . Example of a 
more involved po/e­
zero diagram (a ) ,  and 
the system to which 
it refers, (b). 

Left :  Fig. 1 2. Our original 
elementary system once more, 
for re-examination in the light 
of the pole-zero technique. 

Righ t :  F ig. 1 3. Pole-zero diagram 
for the Fig. 1 2  system. Because the 
transfer function is a simple ratia 
between the distances to zero and 
pole, scale factors ( l lb,T) cancel 
aut, so do not come into the calcula­
tion. 

J
'f 

_I 
2 1TT 

The same line of reasoning will establish that the 
type 3 function is distinguished from type 4 by a 
pole at the origin. 

If you have a sense of symmetry you will be crying 
out that it isn't fair. Types 1 and 3 have been 
handed out a pole and a zero each, while the even 
numbers have had only a pole and a zero between 
them. 

Well; let's see what we can do for them. The 
type-4 function, 1 + jwT, doesn't seem to have 
much room for hiding a pole besides its obvious 
zero (f = j /27TT). But it does go to' infinity if 
f = ± jCXJ, so that is a sort of pole. No wonder we 
couldn't see this pole, right at the back of beyond 
and therefore equally far to the east as to the west. 
The same goes for the far-flung zero in the type 2 
empire. At that distance, the corresponding </> 
never starts to grow, and d-being infinitely long at 
the start-has no scope for growth either, so these 
infinite poles and zeros are of no more concern to us 
than a tax collector situated in an extra-galactic nebula. 
Still, symmetry is satisfied, all types now have a 
pigeon pair each, and no further complaints will be 
entertained. 

APPENDIX 
Derivation of time constants, Tl, T2 and Ta, to fit the 

system shown in Fig. 5 to the transfer function 

Vo 1 + jwT2 
VI = 

(1 + jwTJ )  (1 + jwTa) 
According to the circuit this must be equal to 

1 
-,---c + R2 J W  

(1) 

(2) 
The resemblance can be made more obvious by 

multiplying (2) by jwC: 
1 + jwCR2 

1 + jwCCRI + R2) + j2w2LC 
This compares with (1) multiplied out: 

1 + jwT2 
1 + jw (T1 + Ta) + j2w2TI Ta 

So T2 =  CR2 
Tj + Ta = CCRI + R2) 

T1 T3 = LC 
Solving the last two simultaneous equations gives: 

Ta = CCRI/ R2)_± V[CCR1 +R2)/2j2 - LC 
LC 

Tl = Ta 
So if one were given the time constants one would 

choose suitable values of C and R2 to make CR2 = T2 
and at the same time make their impedance about right 

for the circuit. Then L = Tl
C
Ta and RI = Tl � Ta - R2 

229 


	WW 1962 Apr p177
	WW 1962 Apr p178
	WW 1962 Apr p179
	WW 1962 Apr p180
	WW 1962 Apr p181
	WW 1962 May p225
	WW 1962 May p226
	WW 1962 May p227
	WW 1962 May p228
	WW 1962 May p229

